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ABSTRACT 
 

 In this paper, we develop a new class that generates flexible optimal models. The 

appropriate features of the new class and a special member are studied by utilizing 

analytical, graphical, and numerical methodologies. For the estimation of unknown 

parameters, the maximum likelihood, least-square, and percentile methods are discussed 

and selection is based on bias and mean square error via an extensive simulation study. 

Five-life time data sets are evaluated, revealing that the new class has a significant 

advantage over well-known competitors. 
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1. INTRODUCTION 
 

 Applied researchers and practitioners from diverse fields often require a model that  

is capable of modeling a wider range of datasets. Scientists took the initiative to develop 

new generalizations (or G-classes), extensions, and modifications to counter complex 

random phenomena commonly observed in the physical and natural sciences, as well as 

bathtub-shaped failure rate problems, in order to investigate hidden characteristics of 

baseline models. In all these scenarios, Pearson (1895) was the first scientist who 

developed the lifetime models using the system of differential equations. Burr (1942) later 

developed a novel approach for developing lifetime models using differential equations. 

Meanwhile, Hastings et al. (1947) presented a lifetime model based on quantile method. 
 

 The era of generated families was attributed to Lehmann (1953) who proposed two 

classes acknowledged as Lehmann type I & Lehmann type II (LI, LII) and Gupta et al. 

(1998) efforts were acknowledged for exponentiated generated class. A wide range of well-

known generators are Marshall-Olkin-G class by Marshall and Olkin (1997), beta normal 

generated class by Eugene et al. (2002), An odd log-logistic generated class by Gleaton 

and Lynch (2006), A new methodology of generating symmetric models known as 

quadratic rank transmutation maps (QRTM) by Shaw and Buckley (2009), gamma-

generated class by Zografos and Balakrishnan (2009), Kumaraswamy generalized 

generated class by Cordeiro and De Castro (2011), gamma exponentiated exponential 

generated class by Ristic and Balakrishnan (2012), exponentiated generalized class by 
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Cordeiro et al. (2013), odd Weibull generated class by Bourguignon et al. (2014), beta 

Marshall Olkin generated class by Alizadeh et al. (2015), Logistic–X class by Tahir et al. 

(2016), alpha power transformation (APT) and new APT methodology of generating new 

models by Mahdavi and Kundu (2017), and Elbatal et al. (2019), respectively, beta 

transformed–H class referenced by Afify et al. (2017), transmuted transmuted–G class by 

Mansour et al. (2018), generalized odd half-logistic class by Altun et al. (2019), odd Lomax 

class by Cordeiro et al. (2019), Marshall-Olkin alpha power class by Nassar et al. (2019), 

a new modified Kies class by Al-Babtain et al. (2020), Gull alpha power Weibull generated 

class by Ijaz et al. (2020), new Kumaraswamy generated class by Tahir et al. (2020),  

new logarithmic generated class by Aslam et al. (2020), a new generalized class by 

Aldahlan et al. (2021), beta Topp–Leone generated class by Elbatal (2021), generalized 

DUS transformation by Irshad et al. (2021), DUS Kumaraswamy by Karakaya et al. (2021),  

a flexible Burr X–G class by Al-Babtain et al. (2021), extended Burr–R class by Aldahlan 

et al. (2021), Marshall–Olkin odd Burr III–G class by Afify et al. (2021), DUS Weibull by 

Chaudhry and Shareef (2021), Marshall–Olkin Weibull–H class by Afify et al. (2022), a 

new class for power function by Mutairi et al. (2022), odd Fréchet LII generated class by 

Mutairi and Arshad (2022). 
 

 Recently, Iqbal et al. (2021) developed a modified version of LII that was further 

discussed as Kumaraswamy size-biased MLII by Balogun et al. (2021). This time, Balogun 

et al. (2021) developed a MLII generated (MLII–G) class with cumulative distribution 

function (cdf) is given as follows: 
 

𝑃𝑦|𝜓 = 1 − [
1 − 𝐺(𝑦; 𝜓)

1 − 𝑎𝐺(𝑦; 𝜓)
]

𝑏

, 𝑦 ∈ ℝ. (1.1) 

 

where, 𝐺(𝑦; 𝜓) is cdf of the arbitrary baseline model, 1 − 𝑎 > 0 and 𝑏 > 0 are scale and 

shape parameters, respectively.  
 

 To widen the scope and improve the fit, we are interested to develop a new class that is 

capable of generating flexible models to address the monotonic increasing, decreasing, and 

upside–down bathtub–shaped failure rate problems. For this, in Equation (1.1) we modify 

(1–a) as (1+α). Further, a transformation known as DUS–transformation attributed to 

Kumar et al. (2015), with cdf  
 

𝐹𝑦|𝜓 =
𝑒𝐺(𝑦;𝜓) − 1

𝑒 − 1
, 𝑦 ∈ ℝ, 

 

and pdf 

𝑓𝑦|𝜓 =
1

𝑒 − 1
𝑒𝐺(𝑦; 𝜓)g(𝑦; 𝜓) , (1.2) 

 

is utilized.  
 

 In addition, Alzaatreh et al. (2013) “transformed-transfer” T–X approach is used and 

new class known as the DUS modified Lehmann type–II generated (DUSMLII–G) class of 

distributions is developed (see definition 1.1).  
 

 The cdf of the T–X class is defined as follows: 
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𝐹𝑦|𝜓 = ∫ 𝑟(𝑡)𝑑𝑡
𝑊[𝐺(𝑦;𝜓)]

𝑎

=  𝑅[𝑊(𝐺(𝑦;𝜓))], 𝑦 ∈ ℝ, (1.3) 

 

where 𝑟(𝑡) is a pdf corresponding to the cdf 𝑅(𝑡) of any random variable 𝑇 ∈ (𝑎, 𝑏) for 

(−∞ < 𝑎 < 𝑏 < ∞), 𝜓 is a parameters vector and 𝑊[𝐺(𝑦;𝜓)] is a function of 𝐺(𝑦;𝜓) must 

satisfy three conditions: 
 

i) 𝑊[𝐺(𝑦;𝜓)]𝜖 (𝑎, 𝑏),  
 

  ii) 𝑊[𝐺(𝑦;𝜓)] is differentiable and monotonically increasing (non-decreasing), and 
 

  iii) lim
𝑛→−∞

𝑊[𝐺(𝑦;𝜓)] = 𝑎 and lim
𝑛→+∞

𝑊[𝐺(𝑦;𝜓)] = 𝑏. 

 

1.1 Definition  
 The New class is proposed by placing the pdf (Equation (1.2)) in the cdf (Equation 

(1.3)) and substituting the 𝑊[𝐺(𝑦;𝜓)] with 1 − [(1 − 𝐺(𝑦; 𝜓)) (1 + 𝛼𝐺(𝑦;𝜓))⁄ ]
𝛽
.  

 

 Let Y~DUSMLII–G (𝑦; 𝜓) with scale (1 + 𝛼 > 0), shape (𝛽 > 0), and 𝜓 is a 

parameters vector. The cdf of random variable y is obtained as  
 

𝐹𝑦|𝜓 =
1

𝑒 − 1
∫ 𝑒𝐺(𝑦; 𝜓)g(𝑦; 𝜓)𝑑𝑦

1−[(1−𝐺(𝑦; 𝜓)) (1+𝛼𝐺(𝑦;𝜓))⁄ ]
𝛽

0

,  

 

𝐹𝑦|𝜓 =
𝑒1−[(1−𝐺(𝑦; 𝜓)) (1+𝛼𝐺(𝑦;𝜓))⁄ ]

𝛽

− 1

𝑒 − 1
, 𝑦 𝜖 ℝ, 

(1.4) 

 

where [1 − 𝐺(𝑦;𝜓)] and g(𝑦; 𝜓) = 𝑑𝐺(𝑦; 𝜓) 𝑑𝑦⁄  are survival function and pdf of the arbitrary 

baseline model, respectively. Note that, lim
𝑦→0 

𝐺(𝑦;𝜓) = 0, and lim
𝑦→∞ 

𝐺(𝑦;𝜓) = 1. Hence, cdf at 

lim
𝑦→−∞ 

𝐹𝑦|𝜓 = 0, and cdf at lim
𝑦→∞ 

𝐹𝑦|𝜓 = 1. 
 

 The pdf, survival function (sf), hazard rate function (hrf), and quantile function (qf) of 

the DUSMLII–G class are respectively, given by 
 

𝑓𝑦|𝜓 =
𝑒𝛽(1 + 𝛼)

𝑒 − 1
g(𝑦;𝜓)

[1 − 𝐺(𝑦; 𝜓)]
𝛽−1

[1 + 𝛼𝐺(𝑦; 𝜓)]
1+𝛽

𝑒
−[

1−𝐺(𝑦; 𝜓)

1+𝛼𝐺(𝑦;𝜓)
]

𝛽

, (1.5) 

 

𝑠𝑓𝑦|𝜓 =
𝑒

𝑒 − 1
[1 − 𝑒

−[
1−𝐺(𝑦;𝜓)

1+𝛼𝐺(𝑦;𝜓)
]

𝛽

], 

 

ℎ𝑟𝑓𝑦|𝜓 = 𝛽(1 + 𝛼)g(𝑦;𝜓)

[1 − 𝐺(𝑦;𝜓)]
𝛽−1

[1 + 𝛼𝐺(𝑦;𝜓)]
1+𝛽

[𝑒
−[

1−𝐺(𝑦; 𝜓)

1+𝛼𝐺(𝑦;𝜓)
]

𝛽

− 1]

−1

, 

and 
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𝑞𝑓𝑢|𝜓 = 𝐺−1 [
1 − [1 − 𝑙𝑜g[1 + 𝑢(𝑒 − 1)]]

1
𝛽⁄

1 + 𝛼[1 − 𝑙𝑜g[1 + 𝑢(𝑒 − 1)]]
1

𝛽⁄
]. (1.6) 

 

 Note that, if U follows the uniform distribution 𝑈~(0,1), then 𝑌 = 𝑄(𝑈) follows 

DUSMLII–G (𝑦;𝜓). Henceforward the random variable Y with pdf provided in Equation 

(1.5) is denoted by Y~DUSMLII–G (𝑦; 𝜓). The key motivations behind the development 

of the DUSMLII–G class are: to provide a simple and appropriate approach to transform 

the existing models; to advance the features and enhance the applicability of the existing 

models; to introduce the closed-form functions for new models; to improve the fits than 

the other existing models. 
 

 The proposed study is discussed in the following sections. Section 2 illustrates general 

properties along with useful analytical expressions of a special member. Section 3 

illustrates different estimation techniques of parameter. Section 4 presents the real life 

application and Section 5 reports conclusion finally. 

 

2. SPECIAL MEMBER 
 

 This section illustrates some valuable characteristics for a special member of  

the DUSMLII–G class. For this, we suppose, that Y is a random variable that follows  

to the power function distribution (PFD) with cdf 𝐺𝑦 = (𝑦 𝑀⁄ )𝜃 , and pdf  

g𝑦 = (𝜃 𝑀⁄ )(𝑦 𝑀⁄ )𝜃−1, having 𝑦 > 0, 𝜃 > 0, and 𝑀 ≥ 𝑦 are given by respectively. 
 

 Then the analytical expressions for the DUSMLII–PF distribution cdf  
 

𝐹|𝑦 =
𝑒1−[(1−(𝑦 𝑀⁄ )𝜃) (1+𝛼(𝑦 𝑀⁄ )𝜃)⁄ ]

𝛽

− 1

𝑒 − 1
, (2.1) 

 

pdf, hrf, and qf are written as follows, respectively 
 

𝑓|𝑦 = [
𝑒𝛽𝜃(𝛼 + 1)

(𝑒 − 1)𝑀
] [

𝑦

𝑀
]
𝜃−1 [1 − (𝑦 𝑀⁄ )𝜃]

𝛽−1

[1 + 𝛼(𝑦 𝑀⁄ )𝜃]𝛽+1
𝑒

−[
1−(𝑦 𝑀⁄ )𝜃

1+𝛼(𝑦 𝑀⁄ )𝜃
]

𝛽

, (2.2) 

 

ℎ𝑟𝑓|𝑦 =
𝑒𝛽𝜃(𝛼 + 1)𝑦𝜃−1[1 − (𝑦 𝑀⁄ )𝜃]

𝛽−1
𝑒−[(1−(𝑦 𝑀⁄ )𝜃) (1+𝛼(𝑦 𝑀⁄ )𝜃)⁄ ]

𝛽

𝑒𝑀𝜃[1 + 𝛼(𝑦 𝑀⁄ )𝜃]𝛽+1 [1 − 𝑒−[(1−(𝑦 𝑀⁄ )𝜃) (1+𝛼(𝑦 𝑀⁄ )𝜃)⁄ ]
𝛽

]
 , (2.3) 

 

𝑞𝑓|𝑦 = 𝑀 [
1 − [1 − 𝑙𝑜g[1 + 𝑢(𝑒 − 1)]]

1
𝛽⁄

1 + 𝛼[1 − 𝑙𝑜g[1 + 𝑢(𝑒 − 1)]]
1

𝛽⁄
]

1
𝜃⁄

; 𝑞 ∈ (0,1]. (2.4) 

 

 Here discuss all conceivable shapes of pdf and hrf for the DUSMLII–PF distribution. 

Note that, Figure 1 explores right-skewed, left-skewed, symmetric, and reversing bathtub-

shaped curves with different combinations of the parameters. Figure 2 explores increasing, 

and bathtub-shaped curves with different combinations of the parameters. 
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Figure 1: Density Function Plots for Different Parameter Combinations 

 

  
Figure 2: Hazrad Rate Function Plots for Different Parameter Combinations 

 

2.1 Moments and Associated Measures 
 

Theorem 1:  

 If Y ~ DUSMLII–G (𝑦; 𝛼, 𝜃, 𝛽) with scale (1 + 𝛼 > 0), shape (𝜃, 𝛽 > 0) parameters 

with 𝑀 ≥ 𝑦. Then the s-th moments about zero (𝜇𝑠
′ ) of Y is given by 

 

𝜇𝑠
′ =

𝑒𝛽𝜃(𝛼 + 1)

(𝑒 − 1)
∑ 𝛹𝑠,𝜂,𝜁,𝑖+𝑘

𝑀𝑆

𝑠 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

, 
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Proof: 

 The s-th moments about zero (𝜇𝑠
′ ) is defined as  

 

𝜇𝑠
′ = ∫ 𝑦𝑠𝑓|𝑦𝑑𝑦

𝑀

0

. 

 

 By placing the information from Equation (2.2) in 𝜇𝑠
′  , 𝜇𝑠

′  can be written as follows: 
 

𝜇𝑠
′ = [

𝑒𝛽𝜃(𝛼 + 1)

(𝑒 − 1)𝑀
]∫ 𝑦𝑠 [

𝑦

𝑀
]
𝜃−1 [1 − (𝑦 𝑀⁄ )𝜃]

𝛽−1

[1 + 𝛼(𝑦 𝑀⁄ )𝜃]𝛽+1
𝑒

−[
1−(𝑦 𝑀⁄ )𝜃

1+𝛼(𝑦 𝑀⁄ )𝜃
]

𝛽
𝑀

0

𝑑𝑦. (2.5) 

 

 First, we apply exponential series expansion, we have  
 

𝑒
−[

1−(𝑦 𝑀⁄ )𝜃

1+𝛼(𝑦 𝑀⁄ )𝜃
]

𝛽

= ∑
(−1)𝑖

𝑖!

∞

𝑖=0

[
1 − (𝑦 𝑀⁄ )𝜃

1 + 𝛼(𝑦 𝑀⁄ )𝜃
]

𝛽𝑖

. 

 

 Further, we simplify the terms 
[1−(𝑦 𝑀⁄ )𝜃]

𝛽−1

[1+𝛼(𝑦 𝑀⁄ )𝜃]
𝛽+1 and ∑

(−1)𝑖

𝑖!

∞
𝑖=0 [

1−(𝑦 𝑀⁄ )𝜃

1+𝛼(𝑦 𝑀⁄ )𝜃
]
𝛽𝑖

 and the 

expression can be written as follows: 
 

∑
(−1)𝑖

𝑖!

∞

𝑖=0

[1 − (𝑦 𝑀⁄ )𝜃]
𝛽𝑖+𝛽−1

[1 + 𝛼(𝑦 𝑀⁄ )𝜃]
−(𝛽𝑖+𝛽+1)

, 

 

then, we can present the last expression in terms of linear representation as  
 

∑
(−1)𝑖+𝑘

𝑖!

∞

𝑖,𝑗,𝑘=0

𝛼𝑘 (
𝜂
𝑗) (

𝜁
𝑘
) [

𝑦

𝑀
]
𝑣

, (2.6) 

 

 Hence, by placing the information (Equation (2.6)) in Equation (2.5) and integral w.r.t 

“y”, the s-th moments about zero is written as follows: 
 

𝜇𝑠
′ =

𝑒𝛽𝜃(𝛼 + 1)

(𝑒 − 1)
∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀𝑠

𝑠 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

 , (2.7) 

 

where 𝛹𝜂,𝜁,𝑖+𝑘 =
(−1)𝑖+𝑗

𝑖!
𝛼𝑘 (

𝜂
𝑗) (

𝜁
𝑘
), 𝜂 = 𝛽𝑖 + 𝛽 − 1 and 𝜁 = −(𝛽𝑖 + 𝛽 + 1), 𝑣 =

𝜃(𝑗 + 𝑘) , s = 1,2,3, and 4.  
 

 The s-th moments about zero (𝜇𝑠
′ ) has an important role in providing descriptive 

information for a given data set that has extensive use in multidisciplinary areas of science. 

The necessary statistics may easily be deduced by following Equation (2.7). 

  

Corollary 1:  

 The mean 𝜇1
′ , negative moments 𝜇−𝑣

′ , and variance ℵ2 = 𝜇2
′ − (𝜇1

′ )2 of Y can be 

deduced by replacing s of 𝜇𝑠
′  with 1, (−𝑣), and 2, respectively.  

 

 The analytical expressions of mean, negative moments, and variance are:  
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𝜇1
′ =

𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀

1 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

, 

 

𝜇−𝑣
′ =

𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀−𝑣

−𝑣 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

, 

and 

ℵ2 =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1

[
 
 
 
 
 
 ∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀2

2 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

−

𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
( ∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀

1 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

)

2

]
 
 
 
 
 
 

, 

respectively.  
 

 Note that, skewness and kurtosis are very useful characteristics to discuss the tail and 

peak behaviour of a given data set, respectively. The coefficient of skewness (∇𝑠𝑘) and 

coefficient of kurtosis (∇𝑘𝑢𝑟) of Y can be calculated by  
 

∇𝑠𝑘=
𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 2𝜇1
′3

√𝜇2
′ − 𝜇1

′23
, 

 

and ∇𝑘𝑢𝑟=
𝜇4

′ − 4𝜇3
′ 𝜇1

′ + 6𝜇2
′ 𝜇1

′2 − 3𝜇1
′4

(𝜇2
′ − 𝜇1

′2)2
. 

 

respectively. 
 

Corollary 2:  
 The factorial generating function (FGF) is derived by following 
 

𝐸(1 + 𝑝)𝑦 = 𝐸[𝑒𝑦𝑙𝑜g(1+𝑝)] = ∑
[log(1 + 𝑝)]𝑠

𝑠!

∞

𝑠=0

𝜇𝑠
′  

 

and the analytical expression of FGF of Y is given as follows: 
 

𝐹𝐺𝐹(𝑝) =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑

(log(1 + 𝑝))𝑠

𝑠!

∞

𝑠=0

∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀𝑠

𝑠 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

. 

 

Theorem 2:  

 If Y ~ DUSMLII–G (𝑦; 𝛼, 𝜃, 𝛽) with scale (1 + 𝛼 > 0), shape (𝜃, 𝛽 > 0) parameters 

with 𝑀 ≥ 𝑦. Then the moment generating function (MGF) 𝑀𝑌(𝑝) of Y is given by 
 

𝑀𝐺𝐹(𝑝) =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑

𝑝𝑠

𝑠!

∞

𝑠=0

∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀𝑠

𝑠 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

. 

Proof: 

 The MGF is derived by following  
 

𝑀𝐺𝐹(𝑝) = ∫ 𝑒𝑝𝑦𝑓|𝑦𝑑𝑦
𝑀

0

. 
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 We know that 𝑒𝑝𝑦 = ∑
(𝑝𝑦)𝑠

𝑠!

∞
𝑠=0 , then the analytical expression of MGF of Y is written 

as follows: 
 

𝑀𝑌(𝑝) =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑

𝑝𝑠

𝑠!

∞

𝑠=0

∫ 𝑦𝑠(𝑦 𝑀⁄ )𝜃−1
[1 − (𝑦 𝑀⁄ )𝜃]

𝛽−1

[1 + 𝛼(𝑦 𝑀⁄ )𝜃]𝛽+1
𝑒

−[
1−(𝑦 𝑀⁄ )𝜃

1+𝛼(𝑦 𝑀⁄ )𝜃
]

𝛽
𝑀

0

𝑑𝑦. 

 

 Hence, the MGF of Y is given as 
 

𝑀𝑌(𝑝) =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑

𝑝𝑠

𝑠!

∞

𝑠=0

∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀𝑠

𝑠 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

. 

 

Theorem 3:  

 If Y ~ DUSMLII–G (𝑦; 𝛼, 𝜃, 𝛽) with scale (1 + 𝛼 > 0), shape (𝜃, 𝛽 > 0) parameters 

with 𝑀 ≥ 𝑦. Then the characteristic function (CF) 𝜗𝑌(𝑝) of Y is given by 
 

𝐶𝐹(𝑝) =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑

(𝑖𝑝)𝑠

𝑠!

∞

𝑠=0

∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀𝑠

𝑠 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

, 𝑖 = √−1. 

 

Proof: 

 The CF is derived by following  
 

𝐶𝐹(𝑝) = ∫ 𝑒𝑖𝑝𝑦𝑓|𝑦𝑑𝑦
𝑀

0

. 

 

 We know that 𝑒𝑖𝑝𝑦 = ∑
(𝑖𝑝𝑦)𝑠

𝑠!

∞
𝑠=0 , 𝑖 = √−1, then the analytical expression of CF of Y 

is given as follows: 
 

𝜗𝑌(𝑝) =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
 

∑
(𝑖𝑝)𝑠

𝑠!

∞

𝑠=0

∫ 𝑦𝑠(𝑦 𝑀⁄ )𝜃−1
[1 − (𝑦 𝑀⁄ )𝜃]

𝛽−1

[1 + 𝛼(𝑦 𝑀⁄ )𝜃]𝛽+1
𝑒

−[
1−(𝑦 𝑀⁄ )𝜃

1+𝛼(𝑦 𝑀⁄ )𝜃
]

𝛽
𝑀

0

𝑑𝑦. 

 

 Hence, the CF of Y is given as 
 

𝜗𝑌(𝑝) =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑

(𝑖𝑝)𝑠

𝑠!

∞

𝑠=0

∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀𝑠

𝑠 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

, 𝑖 = √−1. 

 

 Here, we analyze the DUSMLII-PF distribution numerically with first four moments 

(𝑚1
′  , 𝑚2

′  , 𝑚3
′ , 𝑚4

′ ) about zero, variance (ℵ2), skewness (∇𝑠𝑘), and kurtosis (∇𝑘𝑢𝑟) for 

different values of model parameter.  
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Table 1 

Numerical Analysis with Moments, Variance, Skewness, and Kurtosis 

Parameters 𝒎𝟏
′  𝒎𝟐

′  𝒎𝟑
′  𝒎𝟒

′  ℵ𝟐 𝛁𝒔𝒌 𝛁𝒌𝒖𝒓 

M=5 

𝛼=2.1 

& 

𝜃=2.1 

𝛽=0.1 0.0140 0.0157 0.0331 0.0897 0.0156 277.502 360.034 

𝛽=0.3 0.1432 0.1684 0.3511 0.9429 0.1600 23.7118 32.3060 

𝛽=0.5 0.3716 0.4950 1.0554 2.8431 0.4476 7.3434 10.7022 

𝛽=0.7 0.6383 0.9685 2.1467 5.8563 0.8427 3.4342 5.3757 

𝛽=0.9 0.9069 1.5446 3.5807 9.9518 1.3053 1.9814 3.3219 

Remarks 1. For fixed 𝜶 = 𝟐. 𝟏, 𝜽 = 𝟐. 𝟏,𝑴 = 𝟓, with 𝟎. 𝟏 < 𝜷 < 𝟎. 𝟗: Increase in 

moments, and variance alongside decrease in skewness, and kurtosis is observed. 

M=3 

𝛽=1.1 

& 

𝜃=1.1 

𝛼=1.1 1.3677 2.5468 5.4363 12.5319 1.7957 0.1879 0.6006 

𝛼=1.3 1.3222 2.4183 5.1066 11.6888 1.7305 0.2277 0.6710 

𝛼=1.5 1.2808 2.3036 4.8160 10.9526 1.6690 0.2681 0.7407 

𝛼=1.7 1.2429 2.2003 4.5577 10.3039 1.6112 0.3086 0.8094 

𝛼=1.9 1.2080 2.1069 4.3265 9.7277 1.5569 0.3493 0.8773 

Remarks 2. For fixed 𝜷 = 𝟏. 𝟏, 𝜽 = 𝟏. 𝟏,𝑴 = 𝟑, with 𝟏. 𝟏 < 𝜶 < 𝟏. 𝟗: Increase in 

moments, decrease in variance alongside increase in skewness, and kurtosis is observed. 

M=2 

𝛼=2 

& 

𝛽=3 

𝜃=1.1 1.3280 1.9292 2.9735 4.7791 0.4617 0.0124 0.1319 

𝜃=2.3 1.0535 1.2319 1.5518 2.0695 0.2922 0.0064 0.1994 

𝜃=3.5 0.9141 0.9294 1.0214 1.1934 0.1269 0.0404 0.0887 

𝜃=4.7 0.8264 0.7596 0.7553 0.7994 0.0338 0.1089 -0.1161 

𝜃=4.9 0.8147 0.7382 0.7236 0.7550 0.0224 0.1243 -0.1566 

Remarks 3. For fixed 𝜶 = 𝟐,𝜷 = 𝟑,𝑴 = 𝟐, with 𝟏. 𝟏 < 𝜶 < 𝟒. 𝟗: Increase in moments, 

decrease in variance alongside decrease and then increase in skewness, and kurtosis is 

observed. 

 

Theorem 4:  

 If Y ~ DUSMLII–G (𝑦; 𝛼, 𝜃, 𝛽) with scale (1 + 𝛼 > 0), shape (𝜃, 𝛽 > 0) parameters 

with 𝑀 ≥ 𝑦. Then the s-th incomplete moment 𝛷𝑠(𝑡) of Y is given by 
 

𝜏𝑠(𝑡) =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑡𝑠

𝑠 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

. 

 

Proof: 

 The s-th incomplete moment is derived by following  
 

𝜏𝑠(𝑡) = ∫ 𝑦𝑠𝑓|𝑦𝑑𝑦
𝑡

0
. 

 

 The analytical expression of s-ICM for Y is given by 
 

𝜏𝑠(𝑡) =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑡𝑠

𝑠 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

. (2.8) 
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Corollary 3: 
 The first ICM is obtained by replacing s with 1 in Equation (2.8) and the analytical 

expression of the first ICM (1st – ICM) of Y is given by 
 

𝜏1(𝑡) =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑡

1 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

. 

 

2.2 Conditional Moments 
 The conditional moments (CMs) of Y are derived by following 
 

𝐶𝑀(𝑦) = 𝐸(𝑦𝑠|𝑌>𝑢) =
1

𝐹̅(𝑢)
∫ 𝑦𝑠𝑓𝑦𝑑𝑦

𝑀

𝑢

 

 

and the analytical expression of CMs is given as follows: 
 

𝐶𝑀(𝑦) =
1

1 − 𝐹(𝑢)
[
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀𝑠 − 𝑢𝑠

𝑠 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

]. 

 

2.3 Residual Functions and Associated Measures 
 

2.3.1 Residual Life Function (RLF)  

 The RLF is discussed as 𝑅𝑢(𝑦) =
𝑆(𝑦+𝑢)

𝑆(𝑢)
 and for Y it can be written as follows: 

 

𝑅𝑦 =
𝑒1−[(1−(𝑦+𝑢 𝑀⁄ )𝜃) (1+𝛼(𝑦+𝑢 𝑀⁄ )𝜃)⁄ ]

𝛽

− 1

𝑒 − 𝑒1−[(1−(𝑢 𝑀⁄ )𝜃) (1+𝛼(𝑢 𝑀⁄ )𝜃)⁄ ]
𝛽 . 

 

 Furthermore, cdf of RLF (𝐹𝑢(𝑦)) can be written as follows: 
 

𝐹𝑢(𝑦) =
𝑒 − 𝑒1−[(1−(𝑢 𝑀⁄ )𝜃) (1+𝛼(𝑢 𝑀⁄ )𝜃)⁄ ]

𝛽

− 𝑒1−[(1−(𝑦+𝑢 𝑀⁄ )𝜃) (1+𝛼(𝑦+𝑢 𝑀⁄ )𝜃)⁄ ]
𝛽

+ 1

𝑒 − 𝑒1−[(1−(𝑢 𝑀⁄ )𝜃) (1+𝛼(𝑢 𝑀⁄ )𝜃)⁄ ]
𝛽 , 

 

2.3.2 Reversed Residual Life Function (R-RLF)  

 The R-RLF is discussed as 𝑅𝑢(𝑦) =
𝑆(𝑦−𝑢)

𝑆(𝑢)
 and for Y it can be written as follows:  

 

𝑅𝑦 =
𝑒1−[(1−(𝑦−𝑢 𝑀⁄ )𝜃) (1+𝛼(𝑦−𝑢 𝑀⁄ )𝜃)⁄ ]

𝛽

− 1

𝑒 − 𝑒1−[(1−(𝑢 𝑀⁄ )𝜃) (1+𝛼(𝑢 𝑀⁄ )𝜃)⁄ ]
𝛽 . 

 

 Furthermore, cdf of RLF (𝐹𝑢(𝑦)) can be written as follows: 
 

𝐹𝑢(𝑦) =
𝑒 − 𝑒1−[(1−(𝑢 𝑀⁄ )𝜃) (1+𝛼(𝑢 𝑀⁄ )𝜃)⁄ ]

𝛽

− 𝑒1−[(1−(𝑦−𝑢 𝑀⁄ )𝜃) (1+𝛼(𝑦−𝑢 𝑀⁄ )𝜃)⁄ ]
𝛽

+ 1

𝑒 − 𝑒1−[(1−(𝑢 𝑀⁄ )𝜃) (1+𝛼(𝑢 𝑀⁄ )𝜃)⁄ ]
𝛽 , 
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2.3.3 Mean Residual Life Function (M-RLF)  

 The M-RLF is discussed as M-RLF =
1−𝜏1(𝑢)

𝑆(𝑢)−𝑢
 and for Y it can be written as follows: 

 

M − RLF =
1

𝑆(𝑢) − 𝑢
[1 −

𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑢

1 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

]. 

 

2.3.4 Mean Inactivity Time (M-IT)  

 The MIT is discussed as M-IT = 𝑢 −
𝜏1(𝑢)

𝐹(𝑢)
 and for Y it can be written as follows: 

 

M − IT = 𝑢 −
[𝑒𝛽𝜃(1 + 𝛼)∑ 𝛹𝜂,𝜁,𝑖+𝑘𝑢

∞
𝑖,𝑗,𝑘=0 ]

1
[𝑒 − 1]

[𝑒1−[(1−(𝑢 𝑀⁄ )𝜃) (1+𝛼(𝑢 𝑀⁄ )𝜃)⁄ ]
𝛽

− 1] [1 + 𝜃(𝑗 + 𝑘 + 1)]
. 

 

2.3.5 Strong Mean Inactivity Time (S-MIT)  

 The S-MIT is discussed as S-MIT = 𝑣2 −
𝜏2(𝑣)

𝐹(𝑣)
 and for Y it can be written as follows: 

 

S − MIT = 𝑣2 −
𝑒𝛽𝜃(1 + 𝛼)∑ 𝛹𝜂,𝜁,𝑖+𝑘𝑣

2∞
𝑖,𝑗,𝑘=0

1
[𝑒 − 1]

[𝑒1−[(1−(𝑣 𝑀⁄ )𝜃) (1+𝛼(𝑣 𝑀⁄ )𝜃)⁄ ]
𝛽

− 1] [1 + 𝜃(𝑗 + 𝑘 + 1)]
 

 

2.4 Bonferroni and Lorenz Curves 
 The application of 1st – ICM is frequently discussed in the Lorenz L(p) and Bonferroni 

B(p) inequalities context. These curves have found some useful applications, particularly 

in demography, insurance, income, and poverty events. The L(p) and B(p) curves are 

defined as follows respectively 
 

𝐿(𝑝) = 𝑝𝐵(𝑝) =
1

𝜇1
′ ∫ 𝑦𝑓|𝑦𝑑𝑦

𝑞

0

, and 𝐵(𝑝) =
𝜏1(𝑞)

𝑝𝜇1
′ =

∫ 𝑦𝑓|𝑦𝑑𝑦
𝑞

0

𝑝𝜇1
′ . 

 

𝜏1(𝑞) is first incomplete moments and it is defined under quantile function. The expression 

is defined as  
 

𝜏1(𝑞) =
𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑞(𝑝)

1 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

 , 

 

𝜇1
′ =

𝑒𝛽𝜃(1 + 𝛼)

𝑒 − 1
∑ 𝛹𝜂,𝜁,𝑖+𝑘

𝑀

1 + 𝜃(𝑗 + 𝑘 + 1)

∞

𝑖,𝑗,𝑘=0

 , 

 

with 𝑞(𝑝) = 𝑦g [
1−[1−𝑙𝑜g[1+𝑝(𝑒−1)]]

1
𝛽⁄

1+𝛼[1−𝑙𝑜g[1+𝑝(𝑒−1)]]
1

𝛽⁄
]

1
𝜃⁄

; 𝑞 ∈ (0,1], 

 

where 𝛹𝜂,𝜁,𝑖+𝑘 =
(−1)𝑖+𝑘

𝑖!
(
𝜂
𝑗) (

−𝜁
𝑘

) 𝛼𝑘. Figure 3 presents Bonferroni (a) and Lorenz (b) 

curves of Y for different combinations of the parameters. 
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(a) (b) 

Figure 3: Bonferroni (a) and Lorenz (b) Curves  

for Different Parameter Combinations 

 

3. INFERENCE 
 

 In this section, we compare the performance of three well-known estimation methods. 

For this, we use the maximum likelihood estimate (MLE), least-square estimate (LSE), and 

percentile (𝑃) methods. A simulation study-based experiment is conducted to compare 

these three methods and the performance is assessed in terms of bias and mean square error 

(MSE) of the estimators. For this, we generate N = 10,000 replicates from Equation (2.3) 

and simulate each sample of size 𝑛 = 30, 40, … , 500. Plots against the Set-I to Set-III for 

MLE, LSE, and 𝑃 at different combinations of the parameters (𝛼, 𝜃, 𝛽) are presented in 

Figures 4 to 6. 

 

3.1 Maximum Likelihood Estimate (MLE) 
 The MLE is considered one of the most popular and widely used methods of parameter 

estimation due to its joyful properties of unbiasedness, efficiency, invariance under 

parameter transformation, consistency, and asymptotically normal distribution. In the  

case of the DUSMLII-PF distribution, we draw a random sample 𝒛 = (𝑧1, … , (𝑧𝑛), to 

estimate the unknown parameters ℶ = (𝛼|𝑀𝐿𝐸 , 𝜃|𝑀𝐿𝐸 , 𝛽𝑀𝐿𝐸)𝑇 . The log-likelihood function 

(say 𝑙𝑦(ℶ)|
𝑀𝐿𝐸

) can be defined as follows: 
 

(𝑧1𝑙𝑦(ℶ)|
𝑀𝐿𝐸

=

[
 
 
 
 
 
 
 𝑛𝑙𝑜g(1 + 𝛼) + 𝑛𝑙𝑜g(𝛽) + 𝑛𝑙𝑜g(𝜃) − 𝑛𝑙𝑜g(𝑀) + 𝑛𝑙𝑜g (

𝑒

𝑒 − 1
) +

(𝜃 − 1) ∑𝑙𝑜g

𝑛

𝑗=1

(𝑦 𝑀⁄ ) + (𝛽 − 1)∑ 𝑙𝑜g

𝑛

𝑗=1

[1 − (𝑦 𝑀⁄ )𝜃] −

(𝛽 + 1) ∑𝑙𝑜g

𝑛

𝑗=1

[1 + 𝛼(𝑦 𝑀⁄ )𝜃] − ∑ [
1 − (𝑦 𝑀⁄ )𝜃

1 + 𝛼(𝑦 𝑀⁄ )𝜃
]

𝛽𝑛

𝑗=1 ]
 
 
 
 
 
 
 

. 
(3.1) 
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 The ML estimators ℶ̂ = (𝛼̂|𝑀𝐿𝐸 , 𝜃̂|
𝑀𝐿𝐸

, 𝛽̂|
𝑀𝐿𝐸

)
𝑇

can be derived by maximizing the 

𝑙𝑦(ℶ)|
𝑀𝐿𝐸

 or solving the nonlinear likelihood equations simultaneously by differentiating 

Equation (3.1) (see appendix A) 

 

3.2 Least Square Estimation (LSE) 

 The LS estimates 𝛼̂|𝐿𝑆, 𝜃̂|
𝐿𝑆

, and 𝛽̂|
𝐿𝑆

 for parameters 𝛼|𝐿𝑆, 𝜃|𝐿𝑆, and 𝛽|𝐿𝑆 can be derived 

by minimizing the function 𝑙𝑦(ℶ)|
𝐿𝑆

 as 
 

𝑙𝑦(ℶ)|
𝐿𝑆

= ∑ [
𝑒

1−[(1−(𝑦|𝑗:𝑛 𝑀⁄ )
𝜃
) (1+𝛼(𝑦|𝑗:𝑛 𝑀⁄ )

𝜃
)⁄ ]

𝛽

− 1

𝑒 − 1
−

𝑗

𝑛 + 1
]

2
𝑛

𝑗

, 

 

w.r.t. 𝛼|𝐿𝑆, 𝜃|𝐿𝑆, and 𝛽|𝐿𝑆. Otherwise, these estimates can be derived by solving the 

following nonlinear equations (see appendix B). 

 

3.3. Percentile Method (P) 
 The P estimates can be derived for the DUSMLII-PF distribution if it has closed form 

cdf. The P estimates 𝛼̂|𝑃, 𝜃̂|
𝑃
, and 𝛽̂|

𝑃
 for parameters 𝛼|𝑃 , 𝜃|𝑃 , and 𝛽|𝑃 can be derived by 

equating the sample P points with corresponding population P points. We can derive the 

estimates of the DUSMLII-PF distribution by minimizing the function 𝑙𝑦(ℶ)|
𝑃

 as 
 

𝑙𝑦(ℶ)|
𝑃

= ∑

[
 
 
 
 

𝑦|𝑗:𝑛 − 𝑦g [
1 − [1 − 𝑙𝑜g[1 + 𝑢𝑗(𝑒 − 1)]]

1
𝛽⁄

1 + 𝛼 [1 − 𝑙𝑜g[1 + 𝑢𝑗(𝑒 − 1)]]
1

𝛽⁄
]

1
𝜃⁄

]
 
 
 
 
2

𝑛

𝑗

, 

 

w.r.t. 𝛼|𝑃 , 𝜃|𝑃 , and 𝛽|𝑃. Note that, 𝑢𝑗 =
𝑗

𝑛+1
 is the estimate𝐹(𝑦|𝑗:𝑛). 

 

 The nonlinear equations are unable to offer the analytical solution for the MLEs. Hence, 

the statistical software R may provide the solution appropriately. The following are the 

plots for MLE, LSE, and P for different combinations of parameters.  
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Figure 4: MLE, LSE, and P plots of Bias and MSE for Set-I 

(𝜶 = 𝟏. 𝟐, 𝜽 = 𝟏. 𝟏, 𝜷 = 𝟏. 𝟏) 
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Figure 5: MLE, LSE, and P plots of Bias and MSE for Set-II 

(𝜶 = 𝟏, 𝜽 = 𝟏, 𝜷 = 𝟏) 

 

  



A New Transformed G Class of Distributions with Theory and Applications 60 

  

  

  

Figure 6: MLE, LSE, and P plots of Bias and MSE for Set-III 

 (𝜶 = 𝟎. 𝟓, 𝜽 = 𝟎. 𝟓, 𝜷 = 𝟎. 𝟓) 

 

 The average Bias and average MSE curves of MLE, LSE, and P, in most cases, 

converge to zero with the increase of sample sizes nevertheless the MLE performance is 

substantially better and more consistent than the LSE and P since it has a reduced MSE in 

all circumstances. 

 

4. APPLICATION TO LIFETIME DATA 
 

 In this section, we compare the DUSLII-PF with those of modified Lehmann type-II 

power function (MLII-PF)(New), DUS-power function(DUS-PF)(New), power function 
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(PF) (Ahsanullah and Kabir (1974)), generalized power function (Gen-PF) (Saran and 

Pandey (2004)), Weibull power function (W-PF) (Tahir et al. (2014)), transmuted power 

function (Tr-PF) (Ahsan-ul-Haq et al. (2016)), Marshall Olkin power function (MO-PF) 

(Okorie et al. (2017)), Kumaraswamy power function (Kum-PF) (Abdul-Moniem (2017)), 

power function Poisson (PF-Poi) (Hassan and Assar (2021)), and zero truncated Poisson 

power function (ZTP-PF) (Okorie et al. (2021)).  
 

 Some well-known statistics of the data sets including mean, standard deviation, 

skewness, kurtosis, lower control limit (LCL), and upper control limits (UCL) are 

presented in Table 2. Anderson- Darling (AD), Cramer von Mises (CVM), and 

Kolmogorov-Smirnov (KS) with their p-values are presented in Tables 3 to 7. Note that 

the better fit model criteria follow the lowest values of these statistics with the highest 

value of KS p-value.  
 

 For this, five-lifetime data sets were explored from the multidisciplinary areas  

of science. The first dataset was discussed by Aarset (1987), which provides information 

about the failure times of fifty devices. The second dataset was discussed by Meeker  

and Escobar (1998), which provides information about the failure times of thirty  

electronic devices. The third dataset was discussed by Barlow et al. (1984), which  

provides information about the fatigue fracture of Kevlar 373/epoxy. The fourth  

dataset was discussed by Cook and Weisberg (1994), which analyzes the lean body  

mass of Australian athletes and finally the fifth dataset provides information about  

the daily death count owing to COVID-19 in China from 23rd January to 28th March.  

The COVID-19 data can be downloaded free from the official website. 

“(https://www.worldometers.info/coronavirus/country/china/)”. The data sets are provided 

in the Appendix C. 

 

Table 2 

Some Well-Known Statistics 

Data Mean 
Standard 

Deviation 
Skewness Kurtosis LCL UCL 

Fifty devices 45.660 32.8353 -0.1319 1.4135 36.3342 54.9977 

Thirty devices 177.03 114.992 -0.2699 1.4536 134.094 219.972 

Fatigue fracture 1.9592 1.5739 1.9406 8.1607 1.5995 2.3189 

Body mass 54.899 6.9221 -0.3023 3.4494 53.5213 56.2684 

COVID-19 death 49.742 43.8730 0.8176 2.4502 38.9570 60.5277 

 

 It's worth noting that the competing models MLII-PF and DUS-PF are brand new, and 

to our knowledge, these models have never been mentioned before. Furthermore, both 

models are being considered for future projects. 
 

 The cdfs of proposed and competitive models are given as follows: 

 

Proposed DUSMLII-PF: 

𝐹|𝑦 = (𝑒1−[(1−(𝑦 𝑀⁄ )𝜃) (1+𝛼(𝑦 𝑀⁄ )𝜃)⁄ ]
𝛽

− 1) (𝑒 − 1)−1|
𝛼,𝜃,𝛽>0,1+𝛼>0,𝑀≥𝑦

. 

https://www.worldometers.info/coronavirus/country/china/)
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MLII-PF (New): 

𝑃𝑦|𝐼 = (1 − (1 − (𝑦 𝑀⁄ )𝜃)
𝛽
(1 + 𝛼(𝑦 𝑀⁄ )𝜃)

−𝛽
)|

𝜃,𝛽>0,1+𝛼>0,𝑀≥𝑦
. 

 

Kum-PF: 

𝑃𝑦|𝐼𝐼
= 1 − (1 − (𝑦 𝑀⁄ )𝛼𝜃)

𝛽
|
𝛼,𝜃,𝛽>0,𝑀≥𝑦

 . 

 

MO-PF: 

𝑃𝑦|𝐼𝐼𝐼
= 1 − (𝛼(1 − (𝑦 𝑀⁄ )𝛽)) ((𝑦 𝑀⁄ )𝛽 + 𝛼(1 − (𝑦 𝑀⁄ )𝛽))⁄ |

𝛼,𝛽>0,𝑀≥𝑦
. 

 

PF-Poi: 

𝑃𝑦|𝐼𝑉
= (𝑒𝛼(𝑦 𝑀⁄ )𝛽 − 1) (𝑒𝛽 − 1)⁄ |

𝛼,𝛽>0,𝑀≥𝑦
. 

 

DUS-PF(New): 

𝑃𝑦|𝑉
= (𝑒(𝑦 𝑀⁄ )𝛼 − 1) (𝑒 − 1)⁄ |

𝛼>0,𝑀≥𝑦
. 

 

Gen-PF: 

𝑃𝑦|𝑉𝐼
= 1 − (𝑀 − 𝑦)𝛼(𝑀 − 𝑦𝑚)−𝛼|𝛼>0,𝑦𝑚≤𝑦≤𝑀. 

 

Tr-PF: 

𝑃𝑦|𝑉𝐼𝐼
= (1 + 𝜆)(𝑦 𝑀⁄ )𝛼 − 𝜆(𝑦 𝑀⁄ )2𝛼 |𝛼>0,|𝜆|≤1,𝑀≥𝑦 . 

 

PF: 

𝑃𝑦|𝑉𝐼𝐼𝐼
= (𝑦 𝑀⁄ )𝛼|𝛼>0,𝑀≥𝑦 .  

 

ZTP-PF: 

𝑃𝑦|𝐼𝑋 = (1 − 𝑒−𝛼(𝑦 𝑀⁄ )𝛽) (1 − 𝑒−𝛼 )−1|
𝛼,𝛽>0,𝑀≥𝑦

. 

 

W-PF: 

𝑃𝑦|𝑋 = 1 − 𝑒−𝛼(𝑦𝜃 (𝑀𝜃−𝑦𝜃)⁄ )
𝛽

|
𝛼,𝜃,𝛽>0,𝑀≥𝑦

. 
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Table 3 

MLEs with SEs of Parameters of the DUSMLII-PF Distribution  

and Fitted Measures for Failure Times of Fifty Devices 

 Model 

MLEs with SEs in (.) Fitted Measures 

𝜶̂ 𝜽̂ 𝜷̂ 𝝀̂ CVM AD KS p-Value 

DUSMLII-PF 
1.2324 

(2.1672) 
0.4924 

(0.1060) 
0.4855 

(0.1879) 
- 0.0735 0.5976 0.0930 0.7799 

MLII-PF(New) 
-0.1330 
(1.0618) 

0.4733 
(0.1149) 

0.4556 
(0.1806) 

- 0.0778 0.6261 0.0983 0.7189 

Kum-PF 
0.9823 

(47.0761) 
0.4435 

(21.2546) 
0.4847 

(0.0802) 
- 0.0779 0.6270 0.0993 0.7077 

MO-PF 
7.1925 

(5.2427) 
0.2629 

(0.1545) 
- - 0.1171 0.8684 0.1677 0.1203 

PF-Poi 
2.1017 

(0.9987) 
0.4564 

(0.1474) 
- - 0.0886 0.7005 0.2037 0.0315 

DUS-PF(New) 
0.5968 

(0.0934) 
- - - 0.0796 0.6413 0.2111 0.0232 

Gen-PF 
0.6754 

(0.0955) 
- - - 0.0847 0.6440 0.2148 0.0198 

Tr-PF 
0.5978 

(0.1233) 
- - 

-0.4468 
(0.2435) 

0.0815 0.6533 0.2150 0.0197 

PF 
0.7238 

(0.1024) 
- - - 0.0793 0.6376 0.2350 0.0080 

ZTP-PF 
1.8634 

(0.2734) 
0.9487 

(0.1195) 
- - - - 0.3119 0.0001 
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Table 4 

MLEs with SEs of Parameters of the DUSMLII-PF Distribution  

and Fitted Measures for Failure Times of Thirty Electronic Devices 

 Model 

MLEs with SEs in (.) Fitted Measures 

𝜶̂ 𝜽̂ 𝜷̂ 𝝀̂ CVM AD KS p-Value 

DUSMLII-PF 
13.1682 

(19.6991) 
0.2942 

(0.0699) 
1.0086 

(0.3979) 
- 0.0691 0.6398 0.1597 0.4283 

MLII-PF(New) 
-5.6148 
(8.6331) 

0.2674 
(0.0702) 

0.9254 
(0.3755) 

- 0.0712 0.6485 0.1599 0.4273 

Kum-PF 
0.1761 

(7.9660) 
2.6101 

(118.081) 
0.3387 

(0.0694) 
- 0.1010 0.8767 0.1787 0.2937 

Gen-PF 
0.4233 

(0.0773) 
- - - 0.1078 0.8802 0.2008 0.1779 

MO-PF 
11.3315 

(12.5805) 
0.2926 

(0.2699) 
- - 0.2043 1.5292 0.2612 0.0334 

PF-Poi 
2.0797 

(1.2097) 
0.6441 

(0.2548) 
- - 0.1312 1.0777 0.2641 0.0304 

DUS-PF(New) 
0.8302 

(0.1685) 
- - - 0.1159 0.9757 0.2675 0.0273 

Tr-PF 
0.8327 

(0.2191) 
- - 

-0.4317 
(0.0362) 

0.1119 0.9503 0.2704 0.0249 

PF 
0.9949 

(0.1816) 
- - - 0.0999 0.8691 0.2828 0.0165 

ZTP-PF 
1.8089 

(0.3396) 
1.2647 

(0.2043) 
- - - - 0.3283 0.0031 
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Table 5 

MLEs with SEs of Parameters of the DUSMLII-PF Distribution  

and Fitted Measures for Fatigue Fracture of Kevlar 373/Epoxy 

 Model 

MLEs with SEs in (.) Fitted Measures 

𝜶̂ 𝜽̂ 𝜷̂ 𝝀̂ CVM AD KS p-Value 

DUSMLII-PF 
17.5448 

(15.7567) 
1.4278 

(0.4180) 
1.6541 

(0.2636) 
- 0.1076 0.6395 0.0861 0.5957 

MLII-PF(New) 
-13.9691 
(12.4432) 

1.3794 
(0.4357) 

1.7451 
(0.2595) 

- 0.1163 0.6924 0.0872 0.5803 

MO-PF 
0.0310 

(0.0142) 
1.9167 

(0.2209) 
- - 0.1352 0.8035 0.0896 0.5446 

ZTP-PF 
7.3429 

(1.2897) 
1.3259 

(0.1138) 
- - 0.1274 0.7518 0.1107 0.2879 

PF-Poi 
-7.2519 
(1.3271) 

1.3194 
(0.1162) 

- - 0.1409 0.8234 0.1108 0.2868 

W-PF 
7.2308 

(1.2823) 
14.6137 

(14.6532) 
0.0901 

(0.0893) 
- 0.1339 0.7847 0.1110 0.2846 

Gen-PF 
3.7183 

(0.4265) 
- - - 0.2798 1.6096 0.1439 0.0777 

Kum-PF 
1.1560 

(41.9093) 
0.9345 

(33.8788) 
4.1117 

(0.7810) 
- 0.2700 1.5388 0.1517 0.0544 

Tr-PF 
0.7749 

(0.0673) 
- - 

0.0382 
(0.0514) 

0.3109 1.7823 0.2225 0.0009 

OGE-PF 
1.4109 

(0.6392) 
0.5519 

(0.2923) 
2.8444 

(1.1105) 
- 0.6044 3.3845 0.2370 0.0003 

PF 
0.5199 

(0.0596) 
- - - 0.2373 1.3686 0.3162 0.0000 

DUS-PF(New) 
0.3569 

(0.0465) 
- - - 0.2691 1.5362 0.3149 0.0000 
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Table 6 

MLEs with SEs of Parameters of the DUSMLII-PF Distribution  

and Fitted Measures for Lean Body Mass of Australian Athletes 

 Model 

MLEs with SEs in (.) Fitted Measures 

𝜶̂ 𝜽̂ 𝜷̂ 𝝀̂ CVM AD KS p-Value 

DUSMLII-PF 
28.2122 

(24.0845) 
1.3449 

(0.3630) 
11.6735 
(1.6300) 

- 0.1110 0.5774 0.0880 0.4206 

MLII-PF(New) 
-21.9715 
(18.4399) 

1.3119 
(0.3831) 

12.2321 
(1.5890) 

- 0.1183 0.6178 0.0910 0.3791 

W-PF 
8.2208 

(1.3175) 
81.9114 

(50.1174) 
0.1076 

(0.0649) 
- 0.1662 0.8230 0.0938 0.3429 

MO-PF 
0.0219 

(0.0089) 
13.2606 
(1.2732) 

- - 0.1381 0.7499 0.0944 0.3354 

ZTP-PF 
8.3120 

(1.3186) 
8.8670 

(0.6582) 
- - 0.1571 0.7733 0.0945 0.3342 

PF-Poi 
-8.2652 
(1.3381) 

8.8494 
(0.6656) 

- - 0.1690 0.8387 0.0946 0.3330 

Kum-PF 
1.8559 

(105.648) 
3.9582 

(225.32) 
4.7851 

(0.8091) 
- 0.3013 1.6150 0.1277 0.0765 

Tr-PF 
4.9473 

(0.3718) 
- - 

-0.0346 
(0.0373) 

- - 0.1937 0.0011 

OGE-PF 
7.4655 

(2.9707) 
0.7331 

(0.3414) 
2.7506 

(0.9588) 
- 0.7232 4.1595 0.2050 0.0004 

Gen-PF 
1.1895 

(0.1189) 
- - - 0.5261 2.9759 0.2774 0.0000 

PF 
3.3343 

(0.3334) 
- - - 0.2462 1.2977 0.3189 0.0000 

DUS-PF(New) 
2.2762 

(0.2593) 
- - - 0.2864 1.5294 0.3229 0.0000 
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Table 7 

MLEs with SEs of Parameters of the DUSMLII-PF Distribution and  

Fitted Measures for Daily Deaths Count Owing to COVID-19 in China 

 Model 

MLEs with SEs in (.) Fitted Measures 

𝜶̂ 𝜽̂ 𝜷̂ 𝝀̂ CVM AD KS p-Value 

DUSMLII-PF 
32.1375 
(31.966) 

0.5881 
(0.1339) 

1.4510 
(0.2786) 

- 0.0406 0.3008 0.0520 0.9940 

MLII-PF(New) 
-18.2305 
(19.269) 

0.5628 
(0.1502) 

1.4387 
(0.2843) 

- 0.0433 0.3173 0.0553 0.9877 

W-PF 
2.7164 

(0.4623) 
5.6399 

(2.2049) 
- - 0.0700 0.4962 0.0642 0.9482 

PF-Poi 
-1.8807 
(0.6820) 

0.9174 
(0.1290) 

- - 0.1080 0.7253 0.0790 0.8050 

MO-PF 
0.2715 

(0.1148) 
1.0906 

(0.1821) 
- - 0.0757 0.5369 0.0843 0.7368 

Tr-PF 
0.7928 

(0.0992) 
- - 

0.5687 
(0.2034) 

0.1396 0.9095 0.1028 0.4887 

ZTP-PF 
3.2235 

(0.4618) 
1.0893 

(0.1069) 
- - 0.0766 0.6053 0.1142 0.3553 

Kum-PF 
0.2128 

(3.5868) 
3.2835 

(55.340) 
1.2064 

(0.1952) 
- 0.1785 1.1510 0.1296 0.2179 

PF 
0.6235 

(0.0767) 
- - - 0.1750 1.1304 0.1524 0.0933 

OGE-PF 
8.6530 

(0.0039) 
0.0684 

(0.0084) 
0.4427 

(0.0039) 
- 0.2009 1.3538 0.1628 0.0606 

DUS-PF(New) 
0.4523 

(0.0638) 
- - - 0.2281 1.4413 0.1677 0.0488 

Gen-PF 
1.6176 

(0.1991) 
- - - 0.0718 0.4995 0.2114 0.0055 
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(i) (ii) 

  
(iii) (iv) 

 
 

(v) (vi) 

  

(vii) (viii) 

 
(ix) 

Figure 7: Fitted Plots for Times to the First Failure of Fifty Devices 
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(i) (ii) 

  
(iii) (iv) 

 
 

(v) (vi) 

  
(vii) (viii) 

 
(ix) 

Figure 8: Fitted Plots for Failure Times of 30 Electronic Components 
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(i) (ii) 

  
(iii) (iv) 

 

 
(v) (vi) 

  
(vii) (viii) 

 
(ix) 

Figure 9: Fitted Plots for Fatigue Fracture of Kevlar 373/Epoxy 
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(i) (ii) 

  
(iii) (iv) 

 
 

(v) (vi) 

  
(vii) (viii) 

 
(ix) 

Figure 10: Fitted Plots for Body Mass of Australian Athletes 
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(i) (ii) 

  
(iii) (iv) 

 

 

(v) (vi) 

  
(vii) (viii) 

 
(ix) 

Figure 11: Fitted Plots for Daily Deaths Count  

Owing to COVID-19 in China 
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 In comparison to the well-known competitors, the DUSMLII-PF distribution has the 

lowest CVM, AD, and KS findings with a higher p-value, as demonstrated in Tables 3 to 

7. As a result, DUSMLII-PF distribution is selected as a model that is more appropriate  

for the subject data sets. Note that, fitted (i) pdf (ii) cdf (iii) Kaplan-Meier (iv) P-P (v) box 

(vi) total time on test transform, and (vii) - (ix) profile log-likelihood (𝛼, 𝜃, 𝛽) plots are 

presented in Figures 7 to 11. These plots show a better fit of the DUSMLII-PF distribution 

on five-lifetime data sets. 

 

5. CONCLUSION 
  

 In this paper, a new class named the DUSMLII–G class of distributions was developed 

and studied. Several mathematical and reliability aspects of the new family, as well as a 

specific member (DUSMLII–PF) distribution, were thoroughly investigated and described. 

Then DUSMLII–PF distribution explored possible shapes of pdf and hrf that could be 

increasing, decreasing, symmetrical, or upside-down bathtub. Three well-known methods 

of estimation, named MLEs, LSEs, and Ps, were used with bias and MSE criteria were 

allocated to select a suitable one. Based on a simulation study, MLE performance was 

determined to be significantly better and more consistent than LSE and P, with a lower 

MSE in all scenarios. For practical illustration, DUSMLII–PF distribution was discussed 

to analyze the events, including failure times of fifty devices, failure times of thirty 

electronic devices, fatigue fracture of Kevlar 373/epoxy, lean body mass of Australian 

athletes, and daily death count owing to COVID-19 in China. Finally, we hope that the pdf 

and hrf's closed-form properties will persuade academics to employ the model as a 

forecasting tool. 
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APPENDIX A 

Partial Derivatives w.r.t 𝜶, 𝜽, 𝜷 of Maximum Likelihood Estimate (MLE) 
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APPENDIX B 

Partial Derivatives w.r.t 𝜶, 𝜽, 𝜷 of Least Square Estimation (LSE) 
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and 
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where, 𝜚1(𝑦|𝑗:𝑛), 𝜚2(𝑦|𝑗:𝑛), and 𝜚3(𝑦|𝑗:𝑛) are derived as follows: 
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APPENDIX C 

The following Data Set have been Used in Application Section 
 

Data Set 1:  

0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0, 11.0, 12.0, 18.0, 18.0, 18.0, 18.0, 18.0, 

21.0, 32.0, 36.0, 40.0, 45.0, 45.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 67.0, 67.0, 67.0, 

67.0, 72.0, 75.0, 79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0, 85.0, 85.0, 

86.0, 86.0. 
 

Data Set 2:  

275, 13, 147, 23, 181, 30, 65, 10, 300, 173, 106, 300, 300, 212, 300, 300, 300, 2, 261, 

293, 88, 247, 28, 143, 300, 23, 300, 80, 245, 266. 
 

Data Set 3:  

0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 

0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 

0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 

1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 

1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 

2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 

2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 

4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960. 
 

Data Set 4:  

4.37, 3.87, 4.00, 4.03, 3.50, 4.08, 2.25, 4.70, 1.73, 4.93, 1.73, 4.62, 3.43, 4.25, 1.68, 

3.92, 3.68, 3.10, 4.03, 1.77, 4.08, 1.75, 3.20, 1.85, 4.62, 1.97, 4.50, 3.92, 4.35, 2.33, 

3.83, 1.88, 4.60, 1.80, 4.73, 1.77, 4.57, 1.85, 3.52, 4.00, 3.70, 3.72, 4.25, 3.58, 3.80, 

3.77, 3.75, 2.50, 4.50, 4.10, 3.70, 3.80, 3.43, 4.00, 2.27, 4.40, 4.05, 4.25, 3.33, 2.00, 

4.33, 2.93, 4.58, 1.90, 3.58, 3.73, 3.73, 1.82, 4.63, 3.50, 4.00, 3.67, 1.67, 4.60, 1.67, 

4.00, 1.80, 4.42, 1.90, 4.63, 2.93, 3.50, 1.97, 4.28, 1.83, 4.13, 1.83, 4.65, 4.20, 3.93, 

4.33, 1.83, 4.53, 2.03, 4.18, 4.43, 4.07, 4.13, 3.95, 4.10, 2.72, 4.58, 1.90, 4.50, 1.95, 

4.83, 4.12. 
 

Data Set 5:  

8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97, 108, 97, 146, 121, 

143, 142, 105, 98, 136, 114, 118, 109, 97, 150, 71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 

30, 28, 27, 22, 17, 22, 11, 7, 13, 10, 14, 13, 11, 8, 3, 7, 6, 9, 7, 4, 6, 5, 3, 5. 


